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reasoning will be useful in understanding the mechanisms of 
reactions catalyzed by structurally uncharacterized enzymes such 
as glyoxalase I,45 proline racemase,46 and both vitamin K de­
pendent47 and biotin-dependent48 carboxylases. 
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We report the observation of bimolecular O atom transfer 
reactions between NO2 and ionic iron porphyrins in the gas phase. 
Both molecular anions (iron(I)) and cations (iron(III)) of iron(II) 
porphyrins accept an O atom from NO2, forming species which 
are nominally iron(III) and iron(V), respectively. Species of this 
kind have not been previously observed in the gas phase and are 
thought to be important in a number of 6xidative processes 
catalyzed by iron porphyrins and related species.' These processes 
include the oxidative processes catalyzed by cytochrome P4502 

and the selective air oxidation of alkanes.3 

The reactant ions were introduced into the ion trap of a Fourier 
transform ion cyclotron resonance (FT-ICR) spectrometer4 

(FTMS-2000 Extrel, Madison, WI) using previously described 
methods involving a heated sample probe and an electron beam56 

or laser desorption.7 Ions were generated from iron(II) tetra-
phenylporphyrin (1), iron(II) tetrakis(pentafluorophenyl)porphyrin 
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(2), iron(II) tetrakis(o-pivalamidophenyl)porphyrin (3),8 and 
iron(II) (o-(5-imidazol-1 -ylvaleramido)phenyl)triphenylporphyrin 
(4).9 Typically NO2 was present at a pressure of 10'7 Torr. 
Under these conditions bimolecular reactions can be unambigu­
ously identified. 

1. R=X=Y=H 

C(CH3)3 

3. R=H, X=Y= c=o 

2. R=X=Y=F 

4. R=X=H, Y= 

NH 

NH 
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(CH2)4 
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•N Q 
The anion of 3 reacts according to eqs 1 and 2. The primary 

[ 3 ] - + NO2* ^ - [ 3 O ] - + NO* 

[3NO2]" 

(D 

(2) 

products react further to form [3(N02)2]* . Intermediates in the 
conversion of [3O]- to [3(N02)2]-, [3NO3]- and [3(NO3)-
(NO2)]""", occur at small steady-state concentrations. We note 
that 3(N02)2~ also results from the condensed-phase reaction 
between NO2" and 3.10 The observation of reaction 1 suggests 
that NO2* is bound to 3*" through an O atom. 

The reactions of 4" with NO2* are essentially the same as those 
of 3-, giving [4O]-, [4(NO2)]-, and finally [4(N02)2]-. 1*" and 
2*", on the other hand, are not observed to form [1O]- and [20]-. 
Instead they form NO2' adducts and transfer an electron to NO2*. 
This suggests that the oxo moieties in [30] - and in [4O]- are 
stabilized by the ortho amido substituents in those species. 

On exposure to NO2", 2"+ disappears exponentially with time 
and is eventually completely converted to products. The ratio of 
[2NO]+ product to [2OH]+ product is independent of reaction 
time but proportional to the ratio of NO2" pressure to 2 pressure. 
These observations are consistent with reactions 3 and 4" where 
[2 - H]" is the radical formed by H atom transfer from 2. The 

2 , + NO2' 

-NO 
* - [20] , + 

P-Hr 

NO2' 

-O2 

[2OH] 

[2NO] 

(3) 

(4) 

rate constant for the first step of reactions 3 and 4 is much smaller 
than the combined rate constants for the second steps of 3 and 
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and NO2 ' to form O2 and NO". The details of the mechanism, which pre­
sumably leaves NO bound to the metal, are not known. 
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m/z 
Figure 1. (a) Spectrum of ions formed by laser desorption of ICl after 
exposure to NO2. Naturally occurring isotopes (13C, 37Cl, 54Fe, etc.) give 
each chemical species several isotopic variants. The right-side axis is 
absolute intensity in arbitrary units, (b) Spectrum identical with a except 
that ions of the mass of 1O+ ejected continuously during the exposure 
to NO2. 

4. Consequently, [20]"+is not directly observed. The interme-
diacy of [20]"+, however, is implied both by the kinetics of the 
reactions and by the results of ion ejection experiments. Such 
an experiment is illustrated in Figure 1 for the reaction of V+ 

with NO2", which is analogous to the 2*+ reaction with NO2*. The 
reactant ion is produced by pulsed laser desorption and stored in 
the ion trap. A pulsed valve12 then opens and admits a burst of 
NO2* following which spectrum la is obtained revealing a sub­
stantial [INO]+ product. Spectrum lb is obtained under identical 
conditions except that an rf voltage is applied to the cell to eject 
ions of the mass of [10] ' + continuously during the NO2" burst.13 

Even though [10] *+ cannot be detected, it can be ejected.14 

Obviously from spectrum lb, eliminating [10]*+ eliminates 
[INO]+, supporting the intermediacy of the former in producing 
the latter. 

The reactions of 3*+ with NO2* are analogous to those of V+ 

and 2*+. On the other hand, 4*+ does not react with NO2*. We 
have previously shown that the "tethered" imidazole base in 4*+ 

is coordinated with the metal.8 The failure of 4"+ to react thus 
suggests that the efficiency of O atom transfer from NO2 ' is 
sensitive to the nature of any axial ligand in the complex and that 
the O atom adds to the metal. 
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Calix[4]arenes are cyclic tetramers of phenol that exist as cone, 
partial cone, 1,2-alternate, and/or 1,3-alternate conformational 
isomers.3"* Currently, it is the cone isomer that is receiving the 
greatest attention as a framework for constructing molecular hosts, 
templates, and pores.3"9 Although the 1H NMR spectra that have 
been reported for all homo-tetrasubstituted calix[4]arene cones 
are consistent with C41, symmetry, recent theoretical calculations 
predict that such a conformation can represent a saddle-point 
structure, where the corresponding C21, isomers ("pinched cones") 
are thermodynamically favored (Figure I).6 The fact that 
pinched-cone conformers have not yet been detected in solution9 

has been rationalized in terms of a rapid interconversion between 
two equivalent C2„ isomers.6 Experimental support for this hy­
pothesis, however, is lacking. 

During the course of our studies dealing with the construction 
of perforated monolayers,7,8 we had need for the tetrasubstituted 
calix[4]arenes I and II. While the synthesis of these compounds 
proved to be straightforward, it soon became apparent that both 
compounds showed unusual spectral properties. Our principal 
findings, which are reported herein, provide the first direct evidence 
that pinched-cone conformers can play a major role in the overall 
structure and dynamics of the calix[4]arene framework. 

I, X=OH 
II, X=NH2 

III, X=OCH3 

Alkylation of 25,26,27,28-tetrahydroxycalix[4]arene10 with 
1-bromooctane afforded the corresponding tetra-«-octyloxy-
tetraether, which was readily isolated as a mixture of cone and 
noncone isomers. Subsequent Friedel-Crafts acylation (CH3C-
OCl) or reaction with NBS afforded a stereoisomeric mixture of 
acetylated and brominated derivatives, respectively, from which 
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